7. Atomic fluorescence spectrometry: Principle, fluorescence yield, AFS experimental arrangement, instrumentation, determinations, flame atomizers (DF, FIGS), advantages, special requirements, constraints and applications.
8. Generation of volatile compounds and application in atomic spectrometry methods: (methods, reactions, optimal release conditions - gas / liquid separators, transport of volatile compounds; atomization of volatile compounds (QTA, GF, DBD and other plasma); interferences in the determination of hydride forming elements (liquid phase or gaseous phase; cold vapor technique for mercury determination; applications to various samples in AAS, AFS, ICP-AES and ICP-MS).
9. Comparison of sensitivities and achievable limits of detection of individual methods of atomic spectrometry and comparison with other instrumental analytical methods including economic aspects. Development of individual methods. Numbers of applications of individual methods in publications and comparison with other instrumental methods.
10. Using the atomic spectrometers as highly selective detectors for separation techniques (interfaces, analyte conversion efficiency, post- (HPLC) vs. pre- (cryotrapping) column derivatization). Speciation analysis, extraction of analytes without loss of speciation information. Specifics of speciation analysis. Use of Reference Materials.
1. Úvod do a rozdělení metod atomové spektrometrie: Princip a zákonitosti vzniku atomových spekter. Emisní a absorpční spektra. Dopplerovské a Lorentzovské rozšíření analytické čáry. Boltzmanův vztah. Atomové absorpční, fluorescenční a emisní metody. Nejvíce využívané metody.
2. Společné části přístrojů: zdroje elektromagnetického záření; disperzní prvky; detektory.
3. Příprava vzorků pro stopovou prvkovou analýzu s použitím atomových spektrometrických metod jako detektorů. Práce s pevnými vzorky, technika „solid sampling“, výhody a omezení (homogenita vzorků, matriční efekty, kalibrační křivky). Mineralizace vzorků (instrumentace).
4. Atomová emisní spektrometrie s plazmovými budicími zdroji: princip metody, definice plazmatu, vznik plazmatu, fyzikální vlastnosti plazmatu; plazmové budicí zdroje (stejnosměrně vázané plazma, mikrovlnně indukované plazma, indukčně vázané plazma; konstrukce, rozdíly, výhody, použitelnost) Instrumentace: Zavádění vzorku do plazmatu: Nebulizéry pneumatické, ultrazvukové, Babingtonův zmlžovač, fritový zmlžovač, mlžná komora. Méně obvyklé techniky zavádění vzorku: hydraulický vysokotlaký zmlžovač, termospray. Zmlžování suspenzí. Přímé vnášení pevných vzorků. Laserová ablace. Elektrotermické vypařování (ETV-ICP-AES). Aplikace FIA. ICP-AES: plazmová hlavice (konstrukce, funkce); radiofrekvenční generátor (princip, požadavky, konstrukční uspořádání); optické uspořádání (disperzní prvek, požadavky na rozlišovací schopnost monochromátoru, Echelle monochromátor, pomocné optické prvky, sekvenční a simultánní uspořádání emisních spektrometrů – výhody, nevýhody); detekce záření; zpracování analytického signálu; nastavování vlnové délky; korekce pozadí; kalibrace; počítačové řízení přístroje a zpracování naměřených dat; Interference (spektrální vs. nespektrální interference, možnosti eliminace); metrologické problémy ICP-AES (eliminace šumu, driftu signálu; dosažené citlivosti a meze detekce); aplikace.
5. ICP-MS: princip spojení obou metod – instrumentace (konstrukce a funkce interface, vzorkovací oblast plazmatu, plazmová hlavice, rotační a difuzní vývěvy, radiofrekvenční generátor, kvadrupolový hmotnostní analyzátor, zpracování signálu, řízení systému); rozlišovací schopnost, citlivost, příklady spekter vzorků; izotopové zastoupení; metoda izotopového zřeďování; hmotnostní interference.
6. Atomová absorpční spektrometrie: Princip AAS, instrumentace: zdroje záření (Xe-lampa, výbojky s dutou katodou, superlampy, bezelektrodové výbojky, laditelný barvivový laser, deuteriová lampa); disperzní prvky a pomocná optika; atomizace (princip, F-AAS, ETA-AAS, QF-AAS); detekce záření a kompenzace nespecifické absorpce pozadí (fotonásobič vs. CCD; korekce u HR-CS-AAS, Zeemanovská korekce, podle Smithe-Hieftjeho, D2-lampou – principy). F- AAS: zmlžovač – různé typy; výhody a nevýhody použití chemických plamenů k atomizaci; děje při atomizaci v plamenu + koncentrační trubice; FIA ve spojení s F- AAS a QF-AAS. ETA-AAS: princip atomizace, hlavice ETA; typy používaných kyvet (celokovové vs. grafitové kyvety, platforma, sonda), optimalizace teplotního programu; výhody a nevýhody elektrotermické atomizace; dosahované citlivosti a meze detekce ve srovnání s F-AAS a QF-AAS; možnost vícenásobného dávkování; modifikátory matrice; děje při atomizaci v grafitovém atomizátoru. AAS s kontinuálním zdrojem záření a vysokou rozlišovací schopností monochromátoru (HR CS AAS): princip, výhody oproti AAS s čarovými zdroji Interference: Definice interference. Vliv na výsledek analýzy. Spektrální interference. Nespektrální interference. Oboje v plamenovém, elektrotermickém i hydridovém uspořádání. Metodické problémy analýzy AAS: Kalibrace a její vyhodnocení. Prokládání kalibračních závislostí. Optimalizace přístrojových parametrů. Metrologické problémy AAS: Eliminace šumu, driftu signálu. Dosažené citlivosti a meze detekce jednotlivých technik a způsobů atomizace. Analytické aplikace.
7. Atomová fluorescenční spektrometrie: Princip, výtěžek fluorescence, experimentální uspořádání AFS, instrumentace, stanovované prvky, plamenové atomizátory (DF, FIGS), výhody, speciální požadavky, omezení a aplikace.
8. Generování těkavých sloučenin a uplatnění v metodách atomové spektrometrie: Generování těkavých sloučenin (metody, reakce; optimální podmínky pro uvolňování – separátory plyn/kapalina; transport těkavých sloučenin) Atomizace těkavých sloučenin (mechanismus; vyhřívané křemenné trubice, plamínek v křemenné trubici, grafitové atomizátory, DBD a jiná plazmata) Interference při stanovení hydridotvorných prvků (v kapalné fázi nebo plynné fázi). Aplikace generování hydridů na různé vzorky v AAS, AFS, ICP-AES a ICP-MS. Technika studených par pro stanovení rtuti.
9. Srovnání citlivostí a dosažitelných mezí detekcí jednotlivých atomových spektrálních metod a porovnání s jinými instrumentálními analytickými metodami včetně ekonomického aspektu. Rozvoj jednotlivých metod. Počty aplikačních publikací využívajících jednotlivé metody. Použití atomových spektrálních metod v praxi a srovnání s jinými instrumentálními metodami.
10. Použití přístrojů pro atomovou spektrometrii jako vysoce selektivních detektorů pro separační techniky (spojovací články; účinnost převodu analytu; post-(HPLC) vs. pre-(cryotrapping) kolonová derivatizace). Speciační analýza, extrakce analytů bez ztráty speciační informace. Specifika speciační analýzy. Použití referenčních materiálů.
Po dobu, kdy nesmí probíhat prezenční výuka, je předmět vyučován interaktivním způsobem v on-line režimu pomocí Google Class Room (https://classroom.google.com/c/MTc5NTcyNzA0NzU3), kde jsou ke každému tématu zveřejňovány materiály a na každou přednášku v Google Meet zvlášť bývá uveden odkaz.
V přednášce jsou podrobně probrány nejpoužívanější metody atomové spektrometrie: atomová absorpční spektrometrie (AAS), atomová fluorescenční spektrometrie (AFS), atomová emisní spektrometrie s indukčně vázaným plazmatem (ICP-AES), hmotnostní spektrometrie s indukčně vázaným plazmatem (ICP-MS). U každé metody je probrána instrumentace, způsoby zavádění vzorku, metrologické a metodologické problémy, interferenční vlivy a analytické aplikace. Dále je pozornost věnována derivatizaci analytu (převod na těkavou sloučeninu) a prvkové speciační analýze včetně zvýšených nároků takových stanovení. Obvykle dosahované meze detekce, citlivosti a rozsahy koncentrací všech metod atomové spektrometrie jsou nakonec vzájemně porovnány.