<span title="1. Úvod do a rozdělení metod atomové spektrometrie:
">1. Introduction and listing of <span title="1. Úvod do a rozdělení metod atomové spektrometrie:
">methods of atomic spectrometry: Principle and patterns of atomic spectrum. Emission and absorption spectra. Doppler and Lorentz broadering of the analytical line. Boltzman's relationship. Atomic absorption, fluorescence and emission methods. <span title="Nejvíce využívan é metody.
">The most used methods.2. Common components of instruments: sources of electromagnetic radiation; dispersing elements; <span title="detektory.
">detectors.3. Preparation of samples for trace elemental analysis using atomic spectrometric methods as detectors. Working with solid samples, solid sampling technique, advantages and limitations (sample homogeneity, matrix effects, calibration curves). <span title="Mineralizace vzorků (instrumentace).
">Mineralization of samples (instrumentation).4. Atomic emission spectrometry with plasma excitation sources: method principle, plasma definition, plasma formation, physical properties of plasma; <span title="plazmové budicí zdroje (stejnosměrně vázané plazma, mikrovlnně indukované plazma, indukčně vázané plazma; konstrukce, rozdíly, výhody, použitelnost)
">plasma excitation sources (DC coupled plasma, microwave-induced plasma, inductively coupled plasma, design, differences, benefits, usability)5. ICP-MS: principle of joining both methods - instrumentation (interface design and function, plasma sampling area, plasma head, rotary and diffusion pumps, radio frequency generator, quadrupole mass analyzer, signal processing, system control); resolution, sensitivity, examples of spectras of some compounds; isotopic composition; isotope dilution method; <span title="hmotnostní interference.
">mass interference.<span title="6. Atomová absorpční spektrometrie:
">6. Atomic absorption spectrometry: AAS principle, instrumentation: radiation sources (Xe-lamp, hollow cathode lamps, superlamps, non-electrodes, tunable dye laser, deuterium lamp); dispersive elements and auxiliary optics; atomization (principle, F-AAS, ETA-AAS, QF-AAS); <span title="detekce záření a kompenzace nespecifické absorpce pozadí (fotonásobič vs. CCD; korekce u HR-CS-AAS, Zeemanovská korekce, podle Smithe-Hieftjeho, D2-lampou – principy).
">radiation detection and non-specific background absorption compensation (photomultiplier vs. CCD, HR-CS-AAS correction, Zeeman correction, Smithe-Hieftje, D2 lamp - principles).
<span title="7. Atomová fluorescenční spektrometrie: Princip, výtěžek fluorescence, experimentální uspořádání AFS, instrumentace, stanovované prvky, plamenové atomizátory (DF, FIGS), výhody, speciální požadavky, omezení a aplikace.
">7. Atomic fluorescence spectrometry: Principle, fluorescence yield, AFS experimental arrangement, instrumentation, determinations, flame atomizers (DF, FIGS), advantages, special requirements, constraints and applications.<span title="8. Generování těkavých sloučenin a uplatnění v metodách atomové spektrometrie:
">8. Generation of volatile compounds and application in atomic spectrometry methods: <span title="8. Generování těkavých sloučenin a uplatnění v metodách atomové spektrometrie:
">(methods, reactions, optimal release conditions - gas / liquid separators, transport of volatile compounds; a<span title="Atomizace těkavých sloučenin (mechanismus; vyhřívané křemenné trubice, plamínek v křemenné trubici, grafitové atomizátory, DBD a jiná plazmata)
">tomization of volatile compounds (QTA, GF, DBD and other plasma); i<span title="Interference při stanovení hydridotvorných prvků (v kapalné fázi nebo plynné fázi).
">nterferences in the determination of hydride forming elements (liquid phase or gaseous phase;<span title="Technika studených par pro stanovení rtuti.
"> cold vapor technique for mercury determination; applications <span title="Aplikace generování hydridů na různé vzorky v AAS, AFS, ICP-AES a ICP-MS.
">to various samples in AAS, AFS, ICP-AES and ICP-MS).9. Comparison of sensitivities and achievable limits of detection of individual methods of atomic spectrometry and comparison with other instrumental analytical methods including economic aspects. Development of individual methods. Numbers of applications of individual methods in publications and comparison with other instrumental methods.10. Using the atomic spectrometers as highly selective detectors for separation techniques (interfaces, analyte conversion efficiency, post- (HPLC) vs. pre- (cryotrapping) column derivatization). Speciation analysis, extraction of analytes without loss of speciation information. Specifics of speciation analysis. Use of Reference Materials.
The most frequently used methods of atomic spectrometry are compared in this course: atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS). Instrumentation, sampling methods, metrological and methodological problems, interferents influences, and analytical applications are discussed in each method.
Furthermore, attention is paid to derivatizing the analyte (conversion to the volatile compound) and elemental speciation analysis including the increased demands of such assays. Typical detection limits, sensitivity, and concentration ranges are mutually compared between all atomic spectrometry methods.