1.2 Elektronová struktura nanokrystalů, balistický transport elektronu, Coulombická blokáda, Lutingerova kapalina
2.1 Sol-gel metody, supramolekulární templátování, solvotermální rekrystalizace
2.2 Samoorganizované nanostruktury, LB filmy
2.3 Tenké vrstvy: CVD, PVD, MBE
3.1 Uhlíkové nanomateriály: nanotuby, fulereny, nanodiamant, aj.
3.2 Oxidické nanomateriály: TiO2, ZnO, ternární oxidy
3.3 Zeolity, molekulová síta
3.4 Polovodičové nanomateriály (kvantové tečky) - využití pro optoelektroniku
3.5 Magnetické nanomateriály
4.1 Elektronová mikroskopie: SEM, TEM
4.2 Mikroskopie rastrující sondou: STM, AFM, SNOM
4.3 Studium porézní struktury: adsorpce
4.4 Analýza povrchů: XPS, AES
5.1 Nanoelektronika, elektrochromní a autoemisní dipspleje
5.2 Konverze a akumulace energie: solární články, baterie, superkondenzátory, palivové články, vodíkové hospodářství
5.3 Samočistící a antibakteriální povlaky; nanomateriály a životní prostředí
5.4 Nanomanipulace, nanomotory
5.5 Nanovlákna, nanokompozity
5.6 Bioaplikace, nanomedicína, senzory, zdravotní rizika nanomateriálů
1.1 Structure of classic crystals and nanocrystals, fotonic crystals, nanowires, nanodesky, Q-crystals
\r\n1.2 Electronic structure of macroscopic crystals and nanocrystals
2.1 Formation of nanoparticles
Physical and chemical methods, Classical nucleation theory, Laser vaporization and laser photolysis of organometalic compounds, coalescence, coagulation and size distribution, mechanical attrition (high energy ball milling), mechanochemistry
2.2. Particle synthesis by chemical route
Nucleation and grow from solution, aqueous methods, colloids, micelles, polymers, glasses, non-aqueous methods, ceramics, composites, spray pyrolysis
2.3 Sol-gel methods, supramolecular templates, solvotermal recrystalisation
Alkoxide solution routes, colloidal sols and suspensions, aging and syneresis of gels, multicomponent oxides, Microporous monoliths, Infiltrated composites, citrates route, consolidation of nanomaterials by compaction and sintering
2.4 Self-assembled nanostructures, LB films
\r\n2.5 Thin layers: CVD, PVD, MBE
3. Examples of nanomaterials
Microstructure, processing, thermodynamics and kinetics, electrical and optical properties, Magnetic properties
3.1 Magnetic nanoparticles and nanocomposites
Preparation methods, Monodomain particles, Superparamagnetismus, Critical size, Magnetic properties, Application
3.2. Semiconductor nanoparticles
Quantum confinement, Quantum dots, Nanostructured silicon, Semiconductor III–V and II–VI, Optical properties
3.3. Zeolites, molecular sieves
\r\n3.4. Carbon nanomaterials
nanotubes, fulerens, nanodiamant, etc.
3.5. Oxidic nanomaterials
TiO2, ZnO, ternary oxides
4.1 Electron microscopy: SEM, TEM
\r\n4.2 Microscopy using scanning probe: STM, AFM, SNOM
\r\n4.3 Study of the porous structure: adsorption
\r\n4.4 Analyse of surface: XPS, AES
5.1 Nanoelectronics, electrochromic a autoemission displays
\r\n5.2 Conversion and accumulation of energy: solar cells, battery, supercondensators, fuel cells, hydrogen industry
\r\n5.3 Self-cleaning and antibacterial materials
\r\n5.4 Nanomanipulation, nanomotors
\r\n5.5 Nanofibres, nanocomposites
\r\n5.6 Bioaplication, nanomedicine, sensors, health risks of nanomaterials
\r\n* 1. Introduction 1.1 Structure of classic crystals and nanocrystals, fotonic crystals, nanowires, nanodesky, Q-crystals 1.2 Electronic structure of macroscopic crystals and nanocrystals
* 2. Preparation of nanocrystals 2.1 Formation of nanoparticlesPhysical and chemical methods, Classical nucleation theory, Laser vaporization and laser photolysis of organometalic compounds, coalescence, coagulation and size distribution, mechanical attrition (high energy ball milling), mechanochemistry 2.2. Particle synthesis by chemical routeNucleation and grow from solution, aqueous methods, colloids, micelles, polymers, glasses, non-aqueous methods, ceramics, composites, spray pyrolysis 2.3 Sol-gel methods, supramolecular templates, solvotermal recrystalisationAlkoxide solution routes, colloidal sols and suspensions, aging and syneresis of gels, multicomponent oxides, Microporous monoliths, Infiltrated composites, citrates route, consolidation of nanomaterials by compaction and sintering 2.4 Self-assembled nanostructures, LB films 2.5 Thin layers: CVD, PVD, MBE 3. Examples of nanomaterials Microstructure, processing, thermodynamics and kinetics, electrical and optical properties, Magnetic properties 3.1 Magnetic nanoparticles and nanocompositesPreparation methods, Monodomain particles, Superparamagnetismus, Critical size, Magnetic properties, Application 3.2. Semiconductor nanoparticlesQuantum confinement, Quantum dots, Nanostructured silicon, Semiconductor III–V and II–VI, Optical properties 3.3. Zeolites, molecular sieves 3.4. Carbon nanomaterialsnanotubes, fulerens, nanodiamant, etc. 3.5. Oxidic nanomaterialsTiO2, ZnO, ternary oxides
* 4. Methods of the characterization of nanomaterials 4.1 Electron microscopy: SEM, TEM 4.2 Microscopy using scanning probe: STM, AFM, SNOM 4.3 Study of the porous structure: adsorption 4.4 Analyse of surface: XPS, AES
* 5. Selected applications of nanomaterials 5.1 Nanoelectronics, electrochromic a autoemission displays 5.2 Conversion and accumulation of energy: solar cells, battery, supercondensators, fuel cells, hydrogen industry 5.3 Self-cleaning and antibacterial materials 5.4 Nanomanipulation, nanomotors 5.5 Nanofibres, nanocomposites 5.6 Bioaplication, nanomedicine, sensors, health risks of nanomaterials
Physical and chemical methods of preparation of nanoparticles, Microstructure, processing, thermodynamics and kinetics, electrical and optical properties, Magnetic properties of nanomaterials, Methods of the characterization of nanomaterials,
Selected applications of nanomaterials.
The course is designed for Master and PhD students.