kinetika vyhasínání; fluorescenční decay; průměrná doba života; kvantový výtěžek fluorescence;
zhášení fluorescence;
2) Detekce jednotlivých molekul: principiální rozdíly vůči klasickému měření fluorescence ze souboru
mnoha molekul; fotofyzika jednotlivých molekul; metody detekce fluorescence; konfokální versus
wide-filed mikroskop; metoda TIRF (total internal reflection fluorescence); detekce různých
proteinových konfigurací pomocí sm-FRET techniky; rotace a reorientace jednotlivých molekul;
3) Stopování jednotlivých molekul (Single particle tracking, SPT): difúze ve dvou rozměrech; náhodná
procházka; MSD diagramy; různé módy difúze: volná, ‚hindered‘ a hop-difúze. Metody měření SPT;
odvozené techniky: analýza svítivosti a TOCCSL (thining out clusters while conserving stochiometry
of labelling); kolokalizační analýza
4) Fluorescenční korelační kroskorelační spektroskopie (FCS a FCCS) I: teorie FCS: autokorelační a
kroskorelační funkce; translační difúze v FCS; inter-system crossing v FCS;
5) FCS a FCCS II: FCS ve dvou dimenzích: aplikace na membrány; FLCS technika; praktické aplikace
FCS: reakční kinetika, vázání proteinů na membránu, klastrování proteinů na membráně;
6) PCH – photon counting histogram: principy a aplikace v biofizice; shot noise; Number and brightness
metoda (N&B); fluorescence antibunching;
7) Depolarizace fluorescence: definice anisotropie; metody její detekce; excitační a emisní anisotropická
spektra; důvody depolarizace fluorescence; kinetika vyhasínání anisotropie; efekty rotační difúze na
fluorescenční anisotropii;
8) Försterův přenos energie (hetero-FRET): FRET v rámci jednoho donor-akceptorového páru; migrace
enegie mezi dvěma donory (homo-FRET); kinetika vyhasínání fluorescence a anisotropie; single
molecule FRET
9) Försterův přenos a migrace energie v poli mnoha donorů a akceptorů: kinetika vyhasínání
fluorescence v poli mnoha akceptorů, FRET na lipidové dvojvrstvě, určení šířky lipidové dvojvrstvy;
MC-FRET; detekce lipidových nanodomén; oligomerizace proteinů na membráně – kvantifikace
pomocí homo- a hetero-FRETu
10) Raster Image Correlation Spectroscopy (RICS) a Imaging-FCS: Principy a praktické aplikace
1) Introduction into fluorescence: Jablonski diagram; absorption and emission spectra; fluorescent
probes; kinetics of fluorescence deexcitation; fluorescence decay; average fluorescence lifetime;
quantum yield of fluorescence; fluorescence quenching;
2) Detection of individual molecules: principal differences between a classical fluorescence
measurements from a large ensemble of molecules and a single molecule fluorescence measurement;
photophysics of individual molecules; methods of fluorescence detection; confocal versus wide-filed
microscope; total internal reflection fluorescence (TIRF); detection of different protein configurations
by sm-FRET; rotations and reorientations of individual molecules;
3) Single particle tracking (SPT): diffusion in two dimensions; random walk; MSD diagrams; different
modes of diffusion: free, hindered and hop-diffusion. Methods of SPT measurement; Derived
Techniques: brightness analysis and TOCCSL (thinning out clusters while conserving stoichiometry
of labeling); colocalization analysis
4) Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) I: theory of FCS:
autocorrelation and cross-correlation functions; translational diffusion in FCS; inter-system crossing
in FCS;
5) FCS and FCCS II: FCS in two dimensions: applications to lipid membranes; FLCS technique;
practical applications of FCS: reaction kinetics, protein binding to the membrane, clustering of
proteins on the membrane;
6) PCH - photon counting histogram: principles and applications in biophysics; shot noise; Number and
brightness method (N&B); fluorescence anti-bunching;
7) Fluorescence depolarization: definition of anisotropy; measurement of anisotropy; excitation and
emission anisotropic spectra; causes of fluorescence depolarization; kinetics of fluorescence
depolarization; rotational diffusion and its impact on fluorescent anisotropy;
8) Förster resonance energy transfer (hetero-FRET): FRET within one donor-acceptor pair; migration of
energy between two donors (homo-FRET); kinetics of fluorescence deexcitation and depolarization;
single molecule FRET
9) Förster resonance energy transfer and migration in the field of many donors and acceptors:
fluorescence deexcitation kinetics in the field of many acceptors, FRET on lipid bilayer,
determination of the thickness of a lipid bilayer; MC-FRET; detection of lipid nanodomains;
oligomerization of proteins on the membrane - quantification using homo- and hetero-FRET
10) Raster Image Correlation Spectroscopy (RICS) and Imaging-FCS: Principles and practical
applications
1) Introduction into fluorescence: Jablonski diagram; absorption and emission spectra; fluorescentprobes; kinetics of fluorescence deexcitation; fluorescence decay; average fluorescence lifetime;quantum yield of fluorescence; fluorescence quenching;2) Detection of individual molecules: principal differences between a classical fluorescencemeasurements from a large ensemble of molecules and a single molecule fluorescence measurement;photophysics of individual molecules; methods of fluorescence detection; confocal versus wide-filedmicroscope; total internal reflection fluorescence (TIRF); detection of different protein configurationsby sm-FRET; rotations and reorientations of individual molecules;
3) Single particle tracking (SPT): diffusion in two dimensions; random walk; MSD diagrams; differentmodes of diffusion: free, hindered and hop-diffusion. Methods of SPT measurement; DerivedTechniques: brightness analysis and TOCCSL (thinning out clusters while conserving stoichiometryof labeling); colocalization analysis4) Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) I: theory of FCS:autocorrelation and cross-correlation functions; translational diffusion in FCS; inter-system crossingin FCS;5) FCS and FCCS II: FCS in two dimensions: applications to lipid membranes; FLCS technique;practical applications of FCS: reaction kinetics, protein binding to the membrane, clustering ofproteins on the membrane;6) PCH - photon counting histogram: principles and applications in biophysics; shot noise; Number andbrightness method (N&B); fluorescence anti-bunching;7) Fluorescence depolarization: definition of anisotropy; measurement of anisotropy; excitation andemission anisotropic spectra; causes of fluorescence depolarization; kinetics of fluorescencedepolarization; rotational diffusion and its impact on fluorescent anisotropy;8) Förster resonance energy transfer (hetero-FRET): FRET within one donor-acceptor pair; migration ofenergy between two donors (homo-FRET); kinetics of fluorescence deexcitation and depolarization;single molecule FRET9) Förster resonance energy transfer and migration in the field of many donors and acceptors:fluorescence deexcitation kinetics in the field of many acceptors, FRET on lipid bilayer,determination of the thickness of a lipid bilayer; MC-FRET; detection of lipid nanodomains;oligomerization of proteins on the membrane - quantification using homo- and hetero-FRET10) Raster Image Correlation Spectroscopy (RICS) and Imaging-FCS: Principles and practicalapplications
Single molecule fluorescence spectroscopy has recently experienced unprecedented rapid development and has become one of the indispensable methods in biophysics. The aim of this course is to make students familiar with this field.
Emphasis is placed on understanding the physico-chemical principles on which these methods are based. The usefulness of these fluorescence techniques is demonstrated on many practical examples from the field of biophysics.