Alkylace/Transalkylace
\r\n\r\n
6. Parní reforming: výroba vodíku a syntézního plynu; Reakce syntézního plynu: syntéza methanolu, Fischer–Tropschova syntéze; water-gas shift.
\r\n
7. Syntéza anorganických sloučenin: syntéza amoniaku, syntéza kys. dusičné, syntéza kys. sírové – chemismus, popis procesů a návrh katalyzátoru. Dezaktivace katalyzátorů.
8. Chemické speciality
\r\nVitamíny, léčiva, vonné látky
\r\nSyntéza speciálních chemikálií: druhy katalyzátorů a reakcí; procesy na bázi aromatické substituce: nitrace, halogenace aromátů; Friedel-Craftsovy reakce, Fisherova syntéza indolu; Přesmyky: Beckmanův, Friesův, benzaminový, pinacolinový, přesmyky terpenů; procesy založené na kondenzačních a redoxních reakcích.
\r\n9. Obnovitelné zdroje energie získané s využitím katalýzy: druhy biomasy, katalytická pyrolíza, základní chemikálie získávané z biomasy a jejich chemie; CO2 jako zdroj uhlíku
\r\n10. Katalýza v ochraně životního prostředí: automobilové katalyzátory: mechanismus a kinetika reakcí; trojcestný katalyzátor; systémy pro odstranění NOx a SOx; selektivní katalytická redukce; katalytické spalování stopových množství těkavých organických látek
\r\nDeNOx
\r\nDeSOx
\r\n11. Souvislosti mezi makroskopickými vlastnostmi a fungováním katalyzátoru. Charakterizace katalyzátoru; návrh katalyzátoru. Nosičové vs. nenosičové katalyzátory. Formování katalyzátorů (prášekové katalyzátory, peletování, granulace, extrudace, monolitické katalyzátory). Metody nanesení aktivní složky na nosič. Aktivní centra.
\r\n12. Homogenní katalyzátory – druhy a vlastnosti
\r\nHomogenně katalyzované průmyslové procesy: hydroformylace, karbonylace methanolu, selektivní oxidace ethylenu ve Wackerově procesu, cross-couplingové reakce, polymerace olefinů s využitím metalocenů; asymetrická katalýza – komerční aplikace asymetrické hydrogenace, enantioselektivní izomerace a epoxidace.
\r\n13. Enzymy: biokatalýza v průmyslu
\r\nSyntéza akrylamidu z akrylonitrilu, aspartamu pomocí enzymatické syntézy peptide a L-aminokyselin pomocí aminoacylasového procesu.
","inLanguage":"cs"},{"@type":"Syllabus","text":"\r\n1. Introduction. Types and important characteristics of industrial catalysts. Homogeneous vs. heterogeneous catalysis. Activity and its descriptors (conversion, space velocity, space–time yield, reaction rate, TOF, TON). Selectivity, shape-selective catalysts, carbon balance. Stability and lifetime of the catalyst.
\r\nIndustrial Catalysts Zeolites, Sulphides, Alumina, Titania, Silica
\r\n\r\n
2. Catalytic reaction engineering. Basic objectives in design of a reactor. Classification of reactors and choice of reactor type. Comparison of batch, tubular, and stirred tank reactors. Material and energy balances. Chemical kinetics and rate equations. Choice of process conditions.
\r\n3. Heterogeneous Catalysts Types, Properties, Components of heterogeneous catalyst: active phase, chemical and textural promoters, supports. Modes of catalyst deactivation: thermally induced deactivation, sintering of the catalytic species or carrier, selective/non-selective poisoning. Coke formation and catalyst regeneration.
\r\n4. Main large-scale heterogeneously catalyzed processes.
\r\nCracking/Hydrocracking; Ammonia synthesis; Synthesis of sulphuric acid; petrochemie; Fluid catalytic cracking.
\r\nKey features of zeolites.
\r\n5. Petrochemistry
\r\nCatalytic reforming,
\r\nIsomerizations
Alkylations/Transalkylations
6. Steam reforming process: generating hydrogen and synthesis gas. Basic concepts, mechanistic details, challenges. Reactions of synthesis gas: methanol synthesis, Fischer–Tropsch process. Water gas shift reaction.
\r\n7. Synthesis of inorganic compounds. Synthesis of ammonia, nitric acid, sulfuric acid: reaction chemistry, process and catalyst design, catalyst deactivation.
\r\n8. Fine Chemicals
\r\nVitamins
Drugs
Fragrances
Synthesis of fine chemicals. Types of catalysts and reactions. Processes based on aromatic substitution: nitration and halogenation of aromatics, Friedel-Crafts alkylation/acylation, Fischer indole synthesis. Rearrangement reactions (Beckmann, Fries and benzamine, pinacol, terpene rearrangements). Processes based on condensation and reduction/oxidation reactions.
\r\n9. Alternative energy sources using catalysis: biomass types, catalytic pyrolysis, platform molecules and their chemistry. CO2 as a feedstock.
\r\n10. Environmental Catalysis. Automotive exhaust catalysis: mechanism and kinetics of the reactions, the three-way catalyst. NOx and SOx removal systems: selective catalytic reduction process. Catalytic afterburning of volatile organic compounds.
\r\nDeNOx
\r\nDeSOx
\r\n11. Macroscopic property-function relationship in catalysis. Characterization of the catalysts. Design of the catalysts: supported and unsupported catalysts. Types of binder and filling materials, forming the final shape of the catalyst (powders, pellets, extrudates, granules, monoliths), methods for incorporating the active material into the support; Active sites
\r\n12. Homogeneous Catalysts Types and Properties
\r\nHomogeneously catalyzed industrial processes: hydroformylation, carbonylation of methanol, selective ethylene oxidation by the Wacker process, cross-coupling reactions, metallocene-based olefin polymerization. Asymmetric catalysis: catalysts, commercial applications in hydrogenation, enantioselective isomerization, epoxidation
\r\n13. Enzymes. Biocatalysis in industry: acrylamide from acrylonitrile, aspartame through enzymatic peptide synthesis, L-amino acids by aminoacylase process.
","inLanguage":"en"}]}1. Úvod. Typy a důležité vlastnosti průmyslových katalyzátorů. Homogenní vs. heterogenní katalyzátor; aktivita a její charakteristiky (konverze, prostorová rychlost, prostoro-časový výtěžek, reakční rychlost, TOF, TON); selektivita, tvarová selektivita, uhlíková bilance; stabilita a životnost katalyzátoru. Průmyslové katalyzátory: zeolity, sulfidy, alumina, oxid titaničitý, silica
2. Reaktorové inženýrství. Východiska pro návrh reaktoru, klasifikace průmyslových reaktorů a volba typu reaktoru. Vsádkové vs. průtočné reaktory; reaktory s pístovým tokem vs. kontinuální promíchávané reaktory. Látková a tepelná balance. Kinetika a její popis. Volba reakčních podmínek.
3. Heterogenní katalyzátory - druhy a vlastnosti Složky katalyzátoru: aktivní faze, chemické a texturní promotory, nosiče; Dezaktivace katalyzátorů: tepelně indukovaná dezaktivace, sintrace, selektivní/neselektivní otrava, tvorba uhlíkatých úsad; regenerace katalyzátoru.
4. Hlavní velkotonážní heterogenně katalyzované procesy Krakování/hydrokrakování; výroba amoniaku; výroba kyseliny sírové; petrochemie aromatických uhlovodíků; FCC Význam zeolite
5. Petrochemie Katalytický reforming, Izomerace Alkylace/Transalkylace
6. Parní reforming: výroba vodíku a syntézního plynu; Reakce syntézního plynu: syntéza methanolu, Fischer–Tropschova syntéze; water-gas shift.
7. Syntéza anorganických sloučenin: syntéza amoniaku, syntéza kys. dusičné, syntéza kys. sírové – chemismus, popis procesů a návrh katalyzátoru. Dezaktivace katalyzátorů.
8. Chemické speciality Vitamíny, léčiva, vonné látky Syntéza speciálních chemikálií: druhy katalyzátorů a reakcí; procesy na bázi aromatické substituce: nitrace, halogenace aromátů; Friedel-Craftsovy reakce, Fisherova syntéza indolu; Přesmyky: Beckmanův, Friesův, benzaminový, pinacolinový, přesmyky terpenů; procesy založené na kondenzačních a redoxních reakcích.
9. Obnovitelné zdroje energie získané s využitím katalýzy: druhy biomasy, katalytická pyrolíza, základní chemikálie získávané z biomasy a jejich chemie; CO2 jako zdroj uhlíku
10. Katalýza v ochraně životního prostředí: automobilové katalyzátory: mechanismus a kinetika reakcí; trojcestný katalyzátor; systémy pro odstranění NOx a SOx; selektivní katalytická redukce; katalytické spalování stopových množství těkavých organických látek DeNOx DeSOx
11. Souvislosti mezi makroskopickými vlastnostmi a fungováním katalyzátoru. Charakterizace katalyzátoru; návrh katalyzátoru. Nosičové vs. nenosičové katalyzátory. Formování katalyzátorů (prášekové katalyzátory, peletování, granulace, extrudace, monolitické katalyzátory). Metody nanesení aktivní složky na nosič. Aktivní centra.
12. Homogenní katalyzátory – druhy a vlastnosti Homogenně katalyzované průmyslové procesy: hydroformylace, karbonylace methanolu, selektivní oxidace ethylenu ve Wackerově procesu, cross-couplingové reakce, polymerace olefinů s využitím metalocenů; asymetrická katalýza – komerční aplikace asymetrické hydrogenace, enantioselektivní izomerace a epoxidace.
13. Enzymy: biokatalýza v průmyslu Syntéza akrylamidu z akrylonitrilu, aspartamu pomocí enzymatické syntézy peptide a L-aminokyselin pomocí aminoacylasového procesu.
Současný svět stojí na produktech chemického průmyslu, kde katalýza hraje naprosto zásadní roli. 85-90% průmyslových procesů využívá nějaký druh katalyzátoru. Kurs Praktické katalýzy si klade za cíl seznámit posluchače s využitím katalyzátorů ve velkotonážních průmyslových procesech. Kurs bude zameřen na popis a pochopení významu katalyzátorů ve zpracování ropy a zemního plynu, Fischer-Tropschově syntéze, syntéze amoniaku nebo petrochemii. Dále bude diskutováno využití katalyzátorů při syntéze chemických specialit (léčiva, vonné látky). Budou zmíněny také průmyslové procesy využívající enzymatické a homogenní katalyzátory v průmyslovém měřítku. Přednášky (průměrně 2 hodiny týdně) budou doplněny experimentálními úkoly (průměrně 1 hodina týdně).
Kurs předpokládá znalosti probírané v předmětu základy katalýzy a obecné znalosti z anorganické, organické a fyzikální chemie.