Alkylace/Transalkylace
\r\n\r\n
6. Parní reforming: výroba vodíku a syntézního plynu; Reakce syntézního plynu: syntéza methanolu, Fischer–Tropschova syntéze; water-gas shift.
\r\n
7. Syntéza anorganických sloučenin: syntéza amoniaku, syntéza kys. dusičné, syntéza kys. sírové – chemismus, popis procesů a návrh katalyzátoru. Dezaktivace katalyzátorů.
8. Chemické speciality
\r\nVitamíny, léčiva, vonné látky
\r\nSyntéza speciálních chemikálií: druhy katalyzátorů a reakcí; procesy na bázi aromatické substituce: nitrace, halogenace aromátů; Friedel-Craftsovy reakce, Fisherova syntéza indolu; Přesmyky: Beckmanův, Friesův, benzaminový, pinacolinový, přesmyky terpenů; procesy založené na kondenzačních a redoxních reakcích.
\r\n9. Obnovitelné zdroje energie získané s využitím katalýzy: druhy biomasy, katalytická pyrolíza, základní chemikálie získávané z biomasy a jejich chemie; CO2 jako zdroj uhlíku
\r\n10. Katalýza v ochraně životního prostředí: automobilové katalyzátory: mechanismus a kinetika reakcí; trojcestný katalyzátor; systémy pro odstranění NOx a SOx; selektivní katalytická redukce; katalytické spalování stopových množství těkavých organických látek
\r\nDeNOx
\r\nDeSOx
\r\n11. Souvislosti mezi makroskopickými vlastnostmi a fungováním katalyzátoru. Charakterizace katalyzátoru; návrh katalyzátoru. Nosičové vs. nenosičové katalyzátory. Formování katalyzátorů (prášekové katalyzátory, peletování, granulace, extrudace, monolitické katalyzátory). Metody nanesení aktivní složky na nosič. Aktivní centra.
\r\n12. Homogenní katalyzátory – druhy a vlastnosti
\r\nHomogenně katalyzované průmyslové procesy: hydroformylace, karbonylace methanolu, selektivní oxidace ethylenu ve Wackerově procesu, cross-couplingové reakce, polymerace olefinů s využitím metalocenů; asymetrická katalýza – komerční aplikace asymetrické hydrogenace, enantioselektivní izomerace a epoxidace.
\r\n13. Enzymy: biokatalýza v průmyslu
\r\nSyntéza akrylamidu z akrylonitrilu, aspartamu pomocí enzymatické syntézy peptide a L-aminokyselin pomocí aminoacylasového procesu.
","inLanguage":"cs"},{"@type":"Syllabus","text":"\r\n1. Introduction. Types and important characteristics of industrial catalysts. Homogeneous vs. heterogeneous catalysis. Activity and its descriptors (conversion, space velocity, space–time yield, reaction rate, TOF, TON). Selectivity, shape-selective catalysts, carbon balance. Stability and lifetime of the catalyst.
\r\nIndustrial Catalysts Zeolites, Sulphides, Alumina, Titania, Silica
\r\n\r\n
2. Catalytic reaction engineering. Basic objectives in design of a reactor. Classification of reactors and choice of reactor type. Comparison of batch, tubular, and stirred tank reactors. Material and energy balances. Chemical kinetics and rate equations. Choice of process conditions.
\r\n3. Heterogeneous Catalysts Types, Properties, Components of heterogeneous catalyst: active phase, chemical and textural promoters, supports. Modes of catalyst deactivation: thermally induced deactivation, sintering of the catalytic species or carrier, selective/non-selective poisoning. Coke formation and catalyst regeneration.
\r\n4. Main large-scale heterogeneously catalyzed processes.
\r\nCracking/Hydrocracking; Ammonia synthesis; Synthesis of sulphuric acid; petrochemie; Fluid catalytic cracking.
\r\nKey features of zeolites.
\r\n5. Petrochemistry
\r\nCatalytic reforming,
\r\nIsomerizations
Alkylations/Transalkylations
6. Steam reforming process: generating hydrogen and synthesis gas. Basic concepts, mechanistic details, challenges. Reactions of synthesis gas: methanol synthesis, Fischer–Tropsch process. Water gas shift reaction.
\r\n7. Synthesis of inorganic compounds. Synthesis of ammonia, nitric acid, sulfuric acid: reaction chemistry, process and catalyst design, catalyst deactivation.
\r\n8. Fine Chemicals
\r\nVitamins
Drugs
Fragrances
Synthesis of fine chemicals. Types of catalysts and reactions. Processes based on aromatic substitution: nitration and halogenation of aromatics, Friedel-Crafts alkylation/acylation, Fischer indole synthesis. Rearrangement reactions (Beckmann, Fries and benzamine, pinacol, terpene rearrangements). Processes based on condensation and reduction/oxidation reactions.
\r\n9. Alternative energy sources using catalysis: biomass types, catalytic pyrolysis, platform molecules and their chemistry. CO2 as a feedstock.
\r\n10. Environmental Catalysis. Automotive exhaust catalysis: mechanism and kinetics of the reactions, the three-way catalyst. NOx and SOx removal systems: selective catalytic reduction process. Catalytic afterburning of volatile organic compounds.
\r\nDeNOx
\r\nDeSOx
\r\n11. Macroscopic property-function relationship in catalysis. Characterization of the catalysts. Design of the catalysts: supported and unsupported catalysts. Types of binder and filling materials, forming the final shape of the catalyst (powders, pellets, extrudates, granules, monoliths), methods for incorporating the active material into the support; Active sites
\r\n12. Homogeneous Catalysts Types and Properties
\r\nHomogeneously catalyzed industrial processes: hydroformylation, carbonylation of methanol, selective ethylene oxidation by the Wacker process, cross-coupling reactions, metallocene-based olefin polymerization. Asymmetric catalysis: catalysts, commercial applications in hydrogenation, enantioselective isomerization, epoxidation
\r\n13. Enzymes. Biocatalysis in industry: acrylamide from acrylonitrile, aspartame through enzymatic peptide synthesis, L-amino acids by aminoacylase process.
","inLanguage":"en"}]}1. Introduction. Types and important characteristics of industrial catalysts. Homogeneous vs. heterogeneous catalysis. Activity and its descriptors (conversion, space velocity, space–time yield, reaction rate, TOF, TON). Selectivity, shape-selective catalysts, carbon balance. Stability and lifetime of the catalyst. Industrial Catalysts Zeolites, Sulphides, Alumina, Titania, Silica
2. Catalytic reaction engineering. Basic objectives in design of a reactor. Classification of reactors and choice of reactor type. Comparison of batch, tubular, and stirred tank reactors. Material and energy balances. Chemical kinetics and rate equations. Choice of process conditions.
3. Heterogeneous Catalysts Types, Properties, Components of heterogeneous catalyst: active phase, chemical and textural promoters, supports. Modes of catalyst deactivation: thermally induced deactivation, sintering of the catalytic species or carrier, selective/non-selective poisoning. Coke formation and catalyst regeneration.
4. Main large-scale heterogeneously catalyzed processes. Cracking/Hydrocracking; Ammonia synthesis; Synthesis of sulphuric acid; petrochemie; Fluid catalytic cracking. Key features of zeolites.
5. Petrochemistry Catalytic reforming, Isomerizations Alkylations/Transalkylations
6. Steam reforming process: generating hydrogen and synthesis gas. Basic concepts, mechanistic details, challenges. Reactions of synthesis gas: methanol synthesis, Fischer–Tropsch process. Water gas shift reaction.
7. Synthesis of inorganic compounds. Synthesis of ammonia, nitric acid, sulfuric acid: reaction chemistry, process and catalyst design, catalyst deactivation.
8. Fine Chemicals Vitamins Drugs Fragrances Synthesis of fine chemicals. Types of catalysts and reactions. Processes based on aromatic substitution: nitration and halogenation of aromatics, Friedel-Crafts alkylation/acylation, Fischer indole synthesis. Rearrangement reactions (Beckmann, Fries and benzamine, pinacol, terpene rearrangements). Processes based on condensation and reduction/oxidation reactions.
9. Alternative energy sources using catalysis: biomass types, catalytic pyrolysis, platform molecules and their chemistry. CO2 as a feedstock.
10. Environmental Catalysis. Automotive exhaust catalysis: mechanism and kinetics of the reactions, the three-way catalyst. NOx and SOx removal systems: selective catalytic reduction process. Catalytic afterburning of volatile organic compounds. DeNOx DeSOx
11. Macroscopic property-function relationship in catalysis. Characterization of the catalysts. Design of the catalysts: supported and unsupported catalysts. Types of binder and filling materials, forming the final shape of the catalyst (powders, pellets, extrudates, granules, monoliths), methods for incorporating the active material into the support; Active sites
12. Homogeneous Catalysts Types and Properties Homogeneously catalyzed industrial processes: hydroformylation, carbonylation of methanol, selective ethylene oxidation by the Wacker process, cross-coupling reactions, metallocene-based olefin polymerization. Asymmetric catalysis: catalysts, commercial applications in hydrogenation, enantioselective isomerization, epoxidation
13. Enzymes. Biocatalysis in industry: acrylamide from acrylonitrile, aspartame through enzymatic peptide synthesis, L-amino acids by aminoacylase process.
Catalysis represents the most important part of production of intermediates and final products in chemical industry. 85-90% of processes are with a catalyst involvement. This course provides fundamental knowledge on how catalysts are employed in the large-scale industrial processes. The course will focus on description of the role of industrial catalysts in oil and natural gas upgrading, Fischer-Tropsch synthesis, ammonia synthesis and aromatic petrochemistry. The application of catalysts for the synthesis of fine chemicals (drugs, flavors and fragrances) will be discussed. Last but not least, application of homogeneous and enzymatic catalysts on industrial level will be provided. The lectures (2 hours per week on average) will be accompanied by experimental practices (1 hour per week on average).
Knowledge from principles of catalysis course and general knowledge of inorganic, organic and physical chemistry is expected.