6. Přechody mezi kvantovými stavy. Interakce záření s látkou. Relace neurčitosti pro energii a čas. Spontánní a stimulovaná emise, lasery.
7. Krystalová struktura pevných látek. Základní pojmy, Bravaisovy mřížky, Wigner-Seitzova cela, Millerovy indexy.
8. Základní vlastnosti rentgenového záření. Ohyb rentgenových paprsků. Reciproké vektory, pojem reciprokého prostoru, vlnový vektor.
9. Brillouinova zóna, pásová struktura pevných látek. Kovy, polovodiče a izolanty. Elektrony v kovu. Fermiho plyn volných elektronů. Hustota stavů.
10. Elektrony v polovodičích, model téměř volných elektronů. Polovodiče s přímým a nepřímým zakázaným pásem. Pojem díry a excitonu. Vlastní a dotované polovodiče
1. Basic properties of electromagnic radiation. Laws of black-body radiation. Photoelectric effect. Bohr's model of atom. De Broglie mass waves, wave-matter duality.
\r\n2. Schrödinger equation. Description of physical variables in quantum mechanics, operator concept. Properties and physical meaning of wave function. Hamilton operator. Superposition principle. Heisenberg uncertainty relations. Measurability of physical variables, commutator of operators.
3. Electron in a quantum box. Low dimensional structures, quantum wells, quantum wires, quantum dots.
4. Quantum mechanical description of a free particle. Hydrogen atom, quantum numbers. Angular momentum operator. Magnetic moment of electron. Spin. Bosons and fermions. Pauli principle.
5. Particle on a potential step and a potential barrier. Tunnel effect. Harmonic oscillator.
6. Transitions between quantum states. Interaction of radiation with matter, Fermi golden rule. Uncertainty relations for energy and time. Stimulated absorption and emission, lasers.
7. Crystal structure of solids. Basic crystallographic concepts, Bravais lattices, Wigner-Seitz cell, Miller indexes.
8. Basic properties of Roentgen radiation. Diffraction of Roentgen rays, Bragg's and Laue equations. Spectral properties of Roentgen radiation. Reciprocal vectors, reciprocal space,
9. Brillouin zone, band structure of solids. Metals, semiconductors and isolators. Electrons in metals - Fermi gas of free electrons. Density of states.
10. Electrons in semiconductors - nearly free electron model. Direct and indirect band gap semiconductors. Electronic transitions in semiconductors, concept of hole and exciton. Intrinsic and doped semiconductors
1. Basic properties of electromagnic radiation. Laws of black-body radiation. Photoelectric effect. Bohr's model of atom. De Broglie mass waves, wave-matter duality.
2. Schrödinger equation. Description of physical variables in quantum mechanics, operator concept. Properties and physical meaning of wave function. Hamilton operator. Superposition principle. Heisenberg uncertainty relations. Measurability of physical variables, commutator of operators.
3. Electron in a quantum box. Low dimensional structures, quantum wells, quantum wires, quantum dots.
4. Quantum mechanical description of a free particle. Hydrogen atom, quantum numbers. Angular momentum operator. Magnetic moment of electron. Spin. Bosons and fermions. Pauli principle.
5. Particle on a potential step and a potential barrier. Tunnel effect. Harmonic oscillator.
6. Transitions between quantum states. Interaction of radiation with matter, Fermi golden rule. Uncertainty relations for energy and time. Stimulated absorption and emission, lasers.
7. Crystal structure of solids. Basic crystallographic concepts, Bravais lattices, Wigner-Seitz cell, Miller indexes.
8. Basic properties of Roentgen radiation. Diffraction of Roentgen rays, Bragg's and Laue equations. Spectral properties of Roentgen radiation. Reciprocal vectors, reciprocal space,
9. Brillouin zone, band structure of solids. Metals, semiconductors and isolators. Electrons in metals - Fermi gas of free electrons. Density of states.
10. Electrons in semiconductors - nearly free electron model. Direct and indirect band gap semiconductors. Electronic transitions in semiconductors, concept of hole and exciton. Intrinsic and doped semiconductors
Phenomena and experiments that enabled formulation of principles of quantum mechanics. Elementary quantum mechanics, free electron, hydrogen atom, spin. Interaction of radiation and matter. Crystal structure of solid state, band structure. Electrons in metals and semiconductors. Electronic transitions in low dimensional crystal structures and amorphous solids. Crystal lattice vibrations.
The lecture is aimed at experimentally oriented students of inorganic, organic and analytical chemistry.