1. Úvod do vektorového počtu. Rozdíl mezi skalárem a vektorem, polohový vektor, lineární závislost a nezávislost vektorů, složkové operace s vektory - souřadnicové soustavy v rovině a prostoru, matice a determinanty.
2. Skalární a vektorový součin dvou vektorů. Definice a geometrický význam skalárního součinu. Absolutní hodnota vektoru, úhel dvou vektorů, určení složek vektoru. Aplikace skalárního součinu ve fyzice - pojem práce, vektor plochy. Definice a geometrický význam vektorového součinu. Axiální vektory, popis rotace, zavedení vektoru úhlové rychlosti.
3. Smíšený a dvojitý vektorový součin. Definice a geometrický význam, pravotočivý a levotočivý systém obecných vektorů, pojem reciprokého vektoru. Shrnutí základních početních operacích s vektory.
4. Zavedení tenzoru, tenzorová algebra, symetrické a antisymetrické tenzory. Transformace vektorů, definice diady, operace s diadami. Fyzikální situace vyžadující zavedení tenzoru - popis silového pusobení na pružné teleso, napětí v pevných látkách. Definice tenzoru. Vyjádrení tenzoru pomocí jednotkových ortogonálních vektorů, tenzor identity. Rozklad tenzoru na symetrickou a antisymetrickou cást, pojem konjugovaného tenzoru. Kvadratická plocha tenzoru a kovariant tenzoru.
5. Úvod do vektorové analýzy, skalární a vektorové funkce jedné proměnné. Pojem vektorové funkce jedné proměnné - základní definice: limita, derivace a primitivní funkce obecné vektorové funkce.
6. Skalární a vektorové funkce vektorové proměnné. Pojem funkce vektorové proměnné, skalární a vektorové pole. Parciální derivace a totální diferenciál funkcí více proměnných. Vyjádření totálního diferenciálu ve formě skalárního součinu - operátorový způsob zápisu totálního diferenciálu. Hamiltonův operátor.
7. Vlastnosti Hamiltonova operátoru Vektorové operace s Hamiltonovým operátorem - zavedení divergence, rotace a gradientu vektoru. Příklady. Operace druhého řádu. Příklady.
8. Pojem toku vektoru plochou, Gaussova věta. Prouděn í kapaliny obecnou plochou, pole vektoru rychlosti. Naznačení odvození Gaussovy věty.
9. Pojem rotace vektoru podél kčivky, Stokesova veta. Práce síly v gravitačním poli. Fyzikální objasnení původu názvu rotace vektoru. Potenciálové a nepotenciálové pole. Naznačení odvození Stokesovy věty.
10. Použití aparátu vektorové analýzy ve fyzikálních situacích. Formulace Maxwellových rovnic v integrálním tvaru, prevedení do diferenciálního tvaru. Odvození vlnové rovnice pro rovinnou elektromagnetickou vlnu, vzájemné vztahy mezi vektory E a B a vektorem směru šírení elektormagnetické vlny.
Opakování základních pojmu a operací vektorového poctu, prohloubení aparátu vektorové algebry na príkladech s fyzikální tématikou. Zavedení tenzoru v trírozmerném prostoru, základní vlastnosti a operace s tenzory.
Skalární a vektorové funkce. Úvod do vektorové analýzy, Hamiltonuv nabla operátor. Pojem divergence a rotace vektoru, príklady použití ve fyzice.