Charles Explorer logo
🇨🇿

Matematika pro fyziky III

Předmět na Matematicko-fyzikální fakulta |
NMAF063

Sylabus

* 0. Fourierova transformace viz NMAF062

* 1. Laplaceova transformace funkcí

Definice Laplaceovy transformace pro funkce, vlastnosti Laplaceovy transformace. Věta o inverzi, použití residuové věty. Použití L.T. na řešení ODR s počátečními podmínkami.

* 2. Speciální funkce

Funkce Gamma a Beta a jejich použití při výpočtech. Besselovy funkce, cylindrické funkce, Besselova rovnice, asymptotika Besselových funkcí, generující funkce, rekurentní formule. Hypergeometrické řady a s nimi související kalkulus.

* 3. Úvod do teorie distribucí

Distribuce, temperované (Schwartzovy) distribuce, funkce jako distribuce, rovnost distribucí, konvergence distribucí, regulární a neregulární distribuce. Derivování distribucí, záměnnost pořadí derivování, derivování funkce se skoky, fundamentální řešení ODR a PDR, Laplaceův operátor pro sféricky symetrické funkce, fundamentální řešení Laplaceovy rovnice. Násobení distribuce funkcí, lineární transformace distribucí. Fourierova transformace temperovaných distribucí, F.T. Diracovy distribuce, konstant, cplx. exponenciál, sinu a kosinu. F.T. sudé distribuce. Vztah derivace a F.T. distribucí, F.T. distribuce s kompaktním nosičem. Plošná distribuce, výpočet F.T. sféricky symetrických funkcí. Spojitost F.T., inverzní F.T. Laplaceova transformace distribucí, vztah L.T. a derivování. Věta o inverzi pro Laplaceovu transformaci, inverzní formule pro holomorfní funkce s maximálně polynomiálním růstem. Aplikace: řešení elektrických obvodů pomocí Laplaceovy transformace. Konvergence distribucí, řady distribucí, vzorkovací distribuce. Distribuce s parametrem, tenzorový součin distribucí a jeho F.T., distributivní Fubiniho věta, konvoluce funkcí a distribucí, derivování jako konvoluce. Vztah konvoluce a Fourierovy (Laplaceovy) transformace. Fourierovy řady a periodické distribuce.

* 4. Aplikace teorie distribucí

Rovnice vedení tepla, Cauchyova úloha pro rovnici vedení tepla, nalezení Greenovy funkce úlohy s počáteční podmínkou pomocí F.T. Vedení tepla na polopřímce a na úsečce (na tyči), na kouli. Vlnová rovnice, Cauchyova úloha s dvojicí počátečních podmínek. Nalezení elementární vlnové funkce v jedné prostorové dimenzi, d'Alembertův vzorec. Vlnový kužel a konečná rychlosti šíření informací. Odvození elementární vlnové funkce ve dvou a třech dimenzích, plošná distribuce, jednovrstva a dvojvrstva. Laplaceova-Poissonova rovnice, řešení na celém prostoru a řešení na oblasti s hranicí. Zadávání okrajových podmínek na hranici, Dirichletova a Neumannova podmínka, smíšená podmínka. Problémy jednoznačnosti, příklady na nejednoznačná řešení. Elementární řešení, řešení na kouli, řešení pro polorovinu.

Anotace

Tato semestrální přednáška navazuje na základní dvouletý kurs matematické analýzy a lineární algebry pro fyziky.