Topics:
Combinatorics on uncountable regular cardinals, Aronszajn a Suslin trees, stationary reflection and its different versions. Combinatorics on successors of singular cardinals. Large cardinals and their basic properties (Mahlo cardinals, weakly compact cardinals, measurable cardinals, etc.), connections between large cardinals and combinatorics on cardinals omega_2, omega_3, etc. Connections with the Continuum Hypothesis (CH) and the properties of the real line. Proper Forcing Axiom and its consequences.
This is a follow up cours for the basic set theory courses intended for master and PhD students.