1. Satellite observations
Global system of weather satellites; geostationary satellites; Low-Earth polar orbiting satellites. EUMETSAT organization and its prime satellites (MSG, MTG, Metop, Metop-SG). European Space Agency (ESA); other European space-related activities and programs. Third party weather satellites and programs – NOAA/JPSS, GOES, and other. Principles and basics of data acquisition and primary data processing; data and products distribution to end users. Spectral bands and their basic characteristics, atmospheric spectral windows. Solar radiance, thermal emission. Reflectivity, transparency, emissivity, brightness temperature. Spectral bands (channels) of various weather satellite instruments. Basic spectral properties of clouds and land; principles of multispectral interpretation of weather satellite data. Basic methods of satellite data and image processing. Advanced image products – color image enhancement, RGB composite images, “sandwich” blended image products, basics of their interpretation. CHMI satellite system – data acquisition, processing, distribution and archive. Software (freeware) for processing and visualization of weather satellite data; data sources and their formats. 2.Radar measurements
Principles of radar measurements and their use in meteorology, development of radar measurements in Czechia. Radar equation, microwave refraction, attenuation, ground clutters. Scanning strategies, user products, radar networks and radar data compositing, radar data visualization . Relation of radar reflectivity and rainfall intensity (Z-R relation), vertical profiles of radar reflectivity. Quantitative precipitation estimates (QPE), QPE uncertainties and possibilities of their correction, combined QPE from radars and rain gauges . Radar characteristics of convective and stratiform clouds, bright-band, life-cycle of convective cells. 3. Lightning detection
Principles of lightning detection and localization, electromagnetic effects of lightning discharge, time of arrival method, direction of source finding method. Lightning detection networks. Measured quantities, products, possibilities of presentation. Combination with another remote sensing data. Using in meteorological applications (nowcasting). 4. Remote sensing of atmospheric composition from space
Ozone, NO2, SO2, Formaldehyde, CO, aerosol optical depth, methods of resolving vertical profiles, currently operational spaceborn remote sensors of atmospheric compositions
Remote sensing of the Earth‘s atmosphere by weather satellites and radars; principles and utilization of Doppler radars, LIDAR and SODAR measurements; lightning detection and localization networks; sensing of atmospheric composition