Charles Explorer logo
🇨🇿

Matematická analýza 1

Předmět na Matematicko-fyzikální fakulta |
NMMA101

Sylabus

*1. Úvod Výroková a predikátová logika, množiny a množinové operace, zobrazení - základní pojmy, mohutnost množin, spočetné množiny, reálná čísla – zavedení bez důkazu, vlastnost suprema, komplexní čísla. *2. Limita posloupnosti Konvergence posloupnosti, nevlastní limita posloupnosti, hlubší věty o limitě posloupnosti: limita monotónní posloupnosti, hromadné body, limsup, liminf, věty: Bolzanova-Weierstrassova, Cantorův princip vložených intervalů, Bolzanova-Cauchyova podmínka. *3. Limita a spojitost funkce Základní pojmy: funkce monotónní, sudé, liché, periodické, limita funkce: okolí bodu, limita a spojitost v bodě (i jednostranné verze), věty o limitách (aritmetika, srovnávání, limita složené funkce, Heineova věta, limita monotónní funkce), funkce spojité na intervalu (nabývání mezihodnot, spojitý obraz intervalu, omezenost, nabývání extrémů, spojitost inverzní funkce). *4. Elementární funkce Zavedení funkce exponenciální, funkcí goniometrických, cyklometrických a obecné mocniny (bez důkazu). *5. Derivace funkce Definice a základní vztahy, aritmetika derivací, derivace složené funkce, derivace inverzní funkce, derivace elementárních funkcí, věty o střední hodnotě (Rolleova, Lagrangeova a Cauchyova), l'Hospitalova pravidla, limita derivace v bodě, vztah monotonie a znaménka derivace, konvexní a konkávní funkce, inflexní bod, vztah derivace a konvexity, asymptoty, průběh funkce. *6. Taylorův polynom Taylorův polynom, Peanův, Lagrangeův a Cauchyův tvar zbytku, symbol malé o a jeho vlastnosti, Taylorovy polynomy elementárních funkcí.

Anotace

První část čtyřsemestrálního kursu matematické analýzy pro bakalářské obory Obecná matematika a MMIB.