Číselná dvojčata a trojčata, jejich zobrazení v ST.
3) Desítková soustava a číselné soustavy o jiném základu (2/4)
Aritmetický a poziční zápis čísel v desítkové soustavě. Řádové počítadlo a řádová tabulka. Násobení a dělení 10, 100, ... Vyjádření čísel v soustavách o jiném základu z (zejména o základu z = 2 a z = 6). Násobení a dělení základem z. Modelování čísel v soustavách o základu z pomocí krychlové stavebnice.
Numerace (počítání po jedné) v soustavě o základu z (tj. analogie přechodu přes desítku v desítkové soustavě). Sčítalka a násobilka. Převody čísel ze soustavy o základu z do desítkové soustavy a naopak.
Sčítání a násobení v různých soustavách. Analogie mezi desítkou soustavou a jinými soustavami. (Analogie stovkové tabulky v soustavách o základu z.)
4) Znaky dělitelnosti a dělitelnost (2/4)
Dělitel a násobek a vztah mezi nimi. (Číslo 12 = 3 . 4, proto jsou čísla 3 a 4 dělitelé čísla 12, nebo jinými slovy 12 je násobek čísel 3 a 4.)
Znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9, 10 a 11 v desítkové soustavě. Modelování ve stovkové tabulce. Odůvodnění znaků dělitelnosti pomocí vlastnosti: Jestliže nějaké číslo dělí dvě čísla, tak dělí i jejich součet. Jsou-li obě čísla b, c dělitelná číslem d, kde a = b + c , je i třetí číslo - tedy a, dělitelné číslem d. (Např. 216 = 200 + 16. Oba sčítanci 200 a 16 jsou dělitelné číslem 4, tedy i 216 je dělitelné číslem 4.)
Aplikace znaků dělitelnosti při úlohách typu: nahraďte v zápise 54*62* hvězdičky číslicemi tak, aby vzniklo číslo dělitelné 4, 6, 8, apod.
Rozšiřující: Jednoduché znaky dělitelnosti v jiných číselných soustavách.
Prvočíslo, složené číslo. Rozklad čísla na prvočísla.
Dělitel, sdružení dělitelé. Tabulka sdružených dělitelů čísla Odhad velikosti menšího ze dvou sdružených dělitelů daného čísla.
Společný dělitel dvou čísel. Tabulka společných dělitelů dvou čísel. Největší společný dělitel (2 a 3 čísel). Definice a výpočty (z tabulky dělitelů těchto čísel, z rozkladu na prvočísla).
Násobek, společný násobek, nejmenší společný násobek. Definice a výpočty (z tabulky násobků těchto čísel, z rozkladu na prvočísla).
Vztah mezi největším společným dělitelem a nejmenším společným násobkem Diagram prvočíselných rozkladů dvou a tří čísel.
Geometrické znázornění Euklidova algoritmu postupného dělení (EAPD) - dělení obdélníku na co největší čtverce. Jeho geometrický význam. Aritmetizace EAPD. Výpočet největšího společného dělitele a nejmenšího společného násobku (např. čísel 70 a 112) pomocí EAPD, tj. bez rozkladu na prvočísla.
5) Zlomky a racionální čísla (2/4)
Zlomek jako operátor. Znázorňování zlomků. Dělení na části a dělení po částech. Sobě rovné zlomky. Racionální číslo jako třída sobě rovných zlomků. Zápis racionální čísla pomocí konečných a nekonečných desetinných rozvojů. Perioda nekonečného desetinného rozvoje, její délka a odhad. této délky. Zlomky se stejným jmenovatelem a jejich nekonečné periodické rozvoje (např. 1/7, 2/7, 3/7, ?). Převod nekonečného periodického rozvoje na zlomek.
6) Diofantovské rovnice (2/2, nebo 4)
Slovní úlohy vedoucí na Diofantovské rovnice typu ax +(-) by = c. Řešení experimentem. Znázornění výsledků ve čtvercové síti - pravidelnost jejich rozložení. Využití pro hledání všech řešení.
\r\n
1. Hundred and thousand table, investigations.
2. Decimal number system and system of other bases. Calculations in these systems.
3. Divisibility tests.
4. Divisibility. Primes, composite numbers, divisors, multiples.
5. Fractions and rational numbers.
6. Diophantine equations.
1. Hundred and thousand table, investigations.
2. Decimal number system and system of other bases. Calculations in these systems.
3. Divisibility tests.
4. Divisibility. Primes, composite numbers, divisors, multiples.
5. Fractions and rational numbers.
6. Diophantine equations.
By solving submitted tasks students' ability to experiment, to organize partial results, to make use of patterns, to formulate and verify hypothesis will be developed. The ability to pose new tasks related to the given problem on basis of asking questions like What if ...? will also be developed.
Stress will be put on the development of ability of argumentation, that means to explain Why...? Why does the given algorithm work? The development of abilities mentioned above is a key requirement in the future teachers training. Thus the conception of subject Arithmetic qualitatively differs from that conception which the students met in their secondary school education.