§ Geometrie čtverečkovaného papíru a její zobecnění na E2 jako prostředí vhodné k experimentování a samostatnému objevování geometrických zákonitostí.
§ Repér roviny E2, kanonický repér, lineární závislost vektorů a baze, souřadnicová soustava daná repérem, ortonormální a ortogonální baze, podobně v E3 a E4.
§ Popis a zkoumání útvarů v E2 a E3 analyticky (např. těžiště trojúhelníka a čtyřstěnu, konvexnost a nekonvexnost útvarů, rovnoběžnostěn a další tělesa, metrické úlohy, příčka mimoběžek).
§ Analytická geometrie kuželoseček, opakování ze SŠ, základní prvky a vlastnosti kružnice, elipsy, hyperboly, paraboly, obecná a středová (vrcholová) rovnice kuželoseček, vzájemná poloha přímky a kuželosečky.
Main topics:
§ Geometry of grid paper and its generalisation into E2 as a context suitable for experimenting and independent discovery of geometrical rules.
§ Linear dependency of vectors, basis, coordinate systems, orthonormal and ortogonal coordinate systems in E2, E3 and E4.
§ Description and investigation of shapes in E2 and E3 in an analytic way.
§ Analytic geometry of conics.
Main topics: § Geometry of grid paper and its generalisation into E2 as a context suitable for experimenting and independent discovery of geometrical rules. § Linear dependency of vectors, basis, coordinate systems, orthonormal and ortogonal coordinate systems in E2, E3 and E4. § Description and investigation of shapes in E2 and E3 in an analytic way. § Analytic geometry of conics.
The subject focuses on analytic geometry in spaces E2, E3 and E4 and the method of generalising knowledge from E2, through E3 to E4. Conics are studied in E2 only.