We study theoretically the electronic structure and photoemission spectra of PuCoGa5 making use of the LDA+Hubbard I approximation implemented in the full-potential LAPW basis, including self-consistency over the charge density. The calculations show relative reduction of the f-states spectral weight at the Fermi energy.
There is fairly good agreement between calculated photoemission spectra and experimental results. We demonstrate that an account of Pu f-electron Coulomb correlations does not modify significantly the Fermi surface topologies but leads to substantial reduction of the f-character for the electronic states at the Fermi energy.
These findings can be important for the theory of superconductivity in PuCoGa5 and related compounds.