Charles Explorer logo
🇬🇧

Hidden Markov Tree Model in Dependency-based Machine Translation

Publication at Faculty of Mathematics and Physics |
2009

Abstract

We would like to draw attention to Hidden Markov Tree Models (HMTM), which are to our knowledge still unexploited in the field of Computational Linguistics, in spite of highly successful Hidden Markov (Chain) Models. In dependency trees, the independence assumptions made by HMTM correspond to the intuition of linguistic dependency.

Therefore we suggest to use HMTM and tree-modified Viterbi algorithm for tasks interpretable as labeling nodes of dependency trees. In particular, we show that the transfer phase in a Machine Translation system based on tectogrammatical dependency trees can be seen as a task suitable for HMTM.

When using the HMTM approach for the English-Czech translation, we reach a moderate improvement over the baseline.