V tomto článku popisujeme efektivní numerické řešení navrženého statistického modelu pomocí moderních algoritmů numerické lineární algebry. Hlavní použité techniky, které přispěly k úspěšnému numerickému řešení, jsou: Numericky stabilní generování vektorů hodnot ortogonálních polynomů ("návrhová" matice Psí ), založené na použití MGS Arnoldiho algoritmu s reortogonalizací, algebraické odvození inverze matice Psí'Omega(-1)Psí a explicitní vyjádření řešení soustavy normálních rovnic, efektivní výpočet testovacích veličin pomocí Choleského rozkladu relativně malých matic.
Techniky představené v tomto článku představují ekonomizovaný způsob řešení problému. Z výpočetního hlediska je uvedený postup numerického řešení rychlý a paměťově nenáročný.
Numericky je nutné manipulovat pouze s malými maticemi. Díky explicitní znalosti řešení není potřeba řešit rozsáhlé systémy lineárních algebraických rovnic.