Charles Explorer logo
🇬🇧

On k-gons and k-holes in point sets

Publication at Faculty of Mathematics and Physics |
2011

Abstract

We consider a variation of the classical Erdoos-Szekeres problems on the existence and number of convex $k$-gons and $k$-holes (empty $k$-gons) in a set of $n$ points in the plane. Allowing the $k$-gons to be non-convex, we show bounds and structural results on maximizing and minimizing their numbers.

Most noteworthy, for any $k$ and sufficiently large $n$, we give a quadratic lower bound for the number of $k$-holes, and show that this number is maximized by sets in convex position. We also provide an improved lower bound for the number of convex 6-holes.