Charles Explorer logo
🇨🇿

Zone diagrams in Euclidean spaces and in other normed spaces

Publikace na Matematicko-fyzikální fakulta |
2012

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Zone diagrams are a variation on the classical concept of Voronoi diagrams. Given n sites in a metric space that compete for territory, the zone diagram is an equilibrium state in the competition.

Formally it is defined as a fixed point of a certain "dominance" map. Asano, Matouek, and Tokuyama proved the existence and uniqueness of a zone diagram for point sites in the Euclidean plane, and Reem and Reich showed existence for two arbitrary sites in an arbitrary metric space.

We establish existence and uniqueness for n disjoint compact sites in a Euclidean space of arbitrary (finite) dimension, and more generally, in a finite-dimensional normed space with a smooth and rotund norm. The proof is considerably simpler than that of Asano et al.

We also provide an example of non-uniqueness for a norm that is rotund but not smooth. Finally, we prove existence and uniqueness for two point sites in the plane with a smooth (but not necessarily rotund) norm.