In the food industry, in the process of creating new agricultural plant products, and in the testing of anti-cancer drugs there is often a need to assay multiple samples of low molecular weight antioxidants, plant samples and foods rich in antioxidants, with minimal additional costs and low degrees of uncertainty. With these demands in mind, we decided to study the fully automated assay of antioxidants using not only automated sample measurements but also automated processing of samples and application of reagents.
The automated pipetting system epMotion 5075 and the automated spectrophotometer BS 400 were chosen for the assay purposes. Five methods were introduced for the automation: 2-diphenyl-1-picrylhydrazyl (DPPH) test, ferric reducing antioxidant power (FRAP) method, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) based test, N,N-dimethyl-1,4-diaminobenzene (DMPD) based test and the free radicals method.
Samples containing one of the four antioxidants (standard rutin, quercitrin, ferulic and gallic acid) in a range 1-1000 mu g/ml were used throughout. All of the tested methods were found suitable for implementation in an automated assay.
However, some of them, such as the ABTS test failed to assay all tested antioxidants. The coefficients of determination were also unequal.
From the analytical point of view, FRAP methods provided the most reliable results in the automated assay; because of the capacity of the method, approximately 240 samples per hour (one sample per 15 seconds) can be assayed using the automated protocol. We were encouraged by the data received and we expect further interest in the practical performance of such automation.
As a mean of testing the robustness of our method, in the next step of our study, oxidative status was assessed in model cell lines derived from prostate cancer (PC-3, PNT1A and 22RV1) that were cultured on ellipticine (0, 0.5, 1, 1.5, 2, 2.5, 5, 7.5, 10, 15 mu mol/l) supplemented agar.