Charles Explorer logo
🇬🇧

A Large Hadron Electron Collider at CERN

Publication at Faculty of Mathematics and Physics |
2012

Abstract

The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60GeV, to possibly 140GeV, energy collides with the intense hadron beams of the LHC. Compared to the first ep collider, HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, Q2, and in the inverse Bjorken x, while with the design luminosity of 1033 cmMINUS SIGN 2sMINUS SIGN 1 the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude.

The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions.

The LHeC thus continues the path of deep inelastic scattering (DIS) into unknown areas of physics and kinematics. The physics programme also includes electron-deuteron and electron-ion scattering in a (Q2, 1/x) range extended by four orders of magnitude as compared to previous lepton-nucleus DIS experiments for novel investigations of neutron's and nuclear structure, the initial conditions of Quark-Gluon Plasma formation and further quantum chromodynamic phenomena.

The LHeC may be realised either as a ring-ring or as a linac-ring collider.