Charles Explorer logo
🇬🇧

Almost free modules and Mittag-Leffler conditions

Publication at Faculty of Mathematics and Physics |
2012

Abstract

Drinfeld recently suggested to replace projective modules by the flat Mittag-Leffler ones in the definition of an infinite dimensional vector bundle on a scheme X (Drinfeld, 2006 [8]). Two questions arise: (1) What is the structure of the class D of all flat Mittag-Leffler modules over a general ring? (2) Can flat Mittag-Leffler modules be used to build a Quillen model category structure on the category of all chain complexes of quasi-coherent sheaves on X? We answer (1) by showing that a module M is flat Mittag-Leffler, if and only if M is N-1-projective in the sense of Eklof and Mekler (2002) [10].

We use this to characterize the rings such that Disclosed under products, and relate the classes of all Mittag-Leffler, strict Mittag-Leffler, and separable modules. Then we prove that the class D is not deconstructible for any non-right perfect ring.

So unlike the classes of all projective and flat modules, the class D does not admit the homotopy theory tools developed recently by Hovey (2002) [26]. This gives a negative answer to (2).