Charles Explorer logo
🇨🇿

Finite reflection groups and the Dunkl-Laplace differential-difference operators in conformal geometry

Publikace na Matematicko-fyzikální fakulta |
2013

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

For a finite reflection subgroup $G\leq O(n+1,1,\mR)$ of the conformal group of the sphere with standard conformal structure $(S^n,[g_0])$, we geometrically derive differential-difference Dunkl version of the series of conformally invariant differential operators with symbols given by powers of Laplace operator. The construction can be regarded as a deformation of the Fefferman-Graham ambient metric construction of GJMS operators.