Charles Explorer logo
🇬🇧

Bichromatic 2-Center of Pairs of Points

Publication at Faculty of Mathematics and Physics |
2012

Abstract

We study a class of geometric optimization problems closely related to the 2-center problem: Given a set S of n pairs of points, assign to each point a color ("red" or "blue") so that each pair's points are assigned different colors and a function of the radii of the minimum enclosing balls of the red points and the blue points, respectively, is optimized. In particular, we consider the problems of minimizing the maximum and minimizing the sum of the two radii.

For each case, minmax and minsum, we consider distances measured in the L 2 and in the L oo metrics. Our problems are motivated by a facility location problem in transportation system design, in which we are given origin/destination pairs of points for desired travel, and our goal is to locate an optimal road/flight segment in order to minimize the travel to/from the endpoints of the segment.