Charles Explorer logo
🇨🇿

Composition of quasiconformal mappings and functions in Triebel-Lizorkin spaces

Publikace na Matematicko-fyzikální fakulta |
2013

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Let $\alpha>0$ and $p\in[1,\infty)$ satisfy $\alpha p\leq n$. Suppose that $f:\rn\to\rn$ is a $K$-quasiconformal mapping and let $u\in W^{\alpha,p}(\rn)$ have compact support.

We find an optimal value of $\beta=\beta(\alpha,K,n)$ such that $u\circ f\in W^{\beta,p}(\rn)$. We also give an answer to the analogous problem where we moreover assume that $u$ is bounded.