We derive a thermodynamically consistent general continuum-mechanical model describing mutually coupled martensitic and ferro/paramagnetic phase transformations in electrically-conductive magnetostrictive materials such as NiMnGa. We use small-strain and eddy-current approximations, yet large velocities and electric current injected through the boundary are allowed.
Fully nonlinear coupling of magneto-mechanical and thermal effects is considered. The existence of energy-preserving weak solutions is proved by showing convergence of time-discrete approximations constructed by a carefully designed semi-implicit regularized scheme.