We compared the effects of inhibitors of kinases ATM (KU55933) and ATR (VE-821) (incubated for 30 min before irradiation) on the radiosensitization of human promyelocyte leukaemia cells (HL-60), lacking functional protein p53. VE-821 reduces phosphorylation of check-point kinase 1 at serine 345, and KU55933 reduces phosphorylation of check-point kinase 2 on threonine 68 as assayed 4 h after irradiation by the dose of 6 Gy.
Within 24 h after gamma-irradiation with a dose of 3 Gy, the cells accumulated in the G2 phase (67 %) and the number of cells in S phase decreased. KU55933 (10 μM)) did not affect the accumulation of cells in G2 phase and did not affect the decrease in the number of cells in S phase after irradiation.
VE-821 (2 and 10 μM)) reduced the number of irradiated cells in the G2 phase to the level of non-irradiated cells and increased the number of irradiated cells in S phase, compared to irradiated cells not treated with inhibitors. In the 144 h interval after irradiation with 3 Gy, there was a considerable induction of apoptosis in the VE-821 group (10 μM)).
The repair of the radiation damage, as observed 72 h after irradiation, was more rapid in the group exposed solely to irradiation and in the group treated with KU55933 (80 and 77 % of cells, respectively, were free of DSBs), whereas in the group incubated with 10 mu M VE-821, there were only 61 % of cells free of DSBs. The inhibition of kinase ATR with its specific inhibitor VE-821 resulted in a more pronounced radiosensitizing effect in HL-60 cells as compared to the inhibition of kinase ATM with the inhibitor KU55933.
In contrast to KU55933, the VE-821 treatment prevented HL-60 cells from undergoing G2 cell cycle arrest. Taken together, we conclude that the ATR kinase inhibition offers a new possibility of radiosensitization of tumour cells lacking functional protein p53.