Charles Explorer logo
🇬🇧

Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large q

Publication |
2013

Abstract

We exhibit infinite families of two-dimensional lattices (some of which are triangulations or quadrangulations of the plane) on which the q-state Potts antiferromagnet has a finite-temperature phase transition at arbitrarily large values of q. This unexpected result is proven rigorously by using a Peierls argument to measure the entropic advantage of sublattice long-range order.

Additional numerical data are obtained using transfer matrices, Monte Carlo simulation, and a high-precision graph-theoretic method.