Charles Explorer logo
🇨🇿

The metaplectic Howe duality and polynomial solutions for the symplectic Dirac operator

Publikace na Matematicko-fyzikální fakulta |
2014

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

We study various aspects of the metaplectic Howe duality realized by the Fischer decomposition for the metaplectic representation space of polynomials on $\mR^{2n}$ valued in the Segal-Shale-Weil representation. As a consequence, we determine symplectic monogenics, i.e. the space of polynomial solutions of the symplectic Dirac operator $D_s$.