Our goal was to develop a unique technical approach for the identification and mapping of clone-specific chromosomal abnormalities down to the single nucleotide level using current molecular cytogenetic techniques, particularly multicolour fluorescence in situ hybridization, multicolour chromosome banding (mFISH, mBAND) and multiplex hybridization of fluorescently labelled BAC clones (BAC-FISH). Higher resolution was achieved by hybridization of fluorescent probes to combed DNA fibres (molecular combing, fibre-FISH).
Another approach used for the precise identification of chromosomal breakpoints was chromosome micro dissection followed by next-generation sequencing (NGS) of the dissected material. Finally, a specific Real-Time PCR assay to monitor MRD was designed.
Modern technologies open new vistas for the detection and identification of unique clone-specific abnormalities in AL patients. Our work clearly suggests that mapping from the chromosomal level down to the nucleotide level is feasible and readily applicable in eligible AL patients, allowing its' use in standard clinical practice and as a tool for personalized "tailor-made" medicine.