Charles Explorer logo
🇨🇿

Structural organization of very small chromosomes: study on a single-celled evolutionary distant eukaryote Giardia intestinalis

Publikace na 1. lékařská fakulta |
2015

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

During mitotic prophase, chromosomes of the pathogenic unicellular eukaryote Giardia intestinalis condense in each of the cell's two nuclei. In this study, Giardia chromosomes were investigated using light microscopy, high-resolution field emission scanning electron microscopy, and in situ hybridization.

For the first time, we describe the overall morphology, condensation stages, and mitotic segregation of these chromosomes. Despite the absence of several genes involved in the cohesion and condensation pathways in the Giardia genome, we observed chromatin organization similar to those found in eukaryotes, i.e., 10-nm nucleosomal fibrils, 30-nm fibrils coiled to chromomeres or in parallel arrangements, and closely aligned sister chromatids.

DNA molecules of Giardia terminate with telomeric repeats that we visualized on each of the four chromatid endings of metaphase chromosomes. Giardia chromosomes lack primary and secondary constrictions, thus preventing their classification based on the position of the centromere.

The anaphase poleward segregation of sister chromatids is atypical in orientation and tends to generate lagging chromatids between daughter nuclei. In the Giardia genome database, we identified two putative members of the kleisin family thought to be responsible for condensin ring establishment.

Thus far, Giardia chromosomes (300 nm to 1.5 μm) are the smallest chromosomes that were analyzed at the ultrastructural level. This study complements the existing molecular and sequencing data on Giardia chromosomes with cytological and ultrastructural information.