Charles Explorer logo
🇨🇿

BAIRE-CLASS xi COLORINGS: THE FIRST THREE LEVELS

Publikace na Matematicko-fyzikální fakulta |
2014

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

The G(0)-dichotomy due to Kechris, Solecki and Todorcevic characterizes the analytic relations having a Borel-measurable countable coloring. We give a version of the G(0)-dichotomy for Sigma(0)(xi)-measurable countable colorings when xi {= 3.

A Sigma(0)(xi)-measurable countable coloring gives a covering of the diagonal consisting of countably many Sigma(0)(xi) squares. This leads to the study of countable unions of Sigma(0)(xi) rectangles.

We also give a Hurewicz-like dichotomy for such countable unions when xi {= 2.