Charles Explorer logo
🇨🇿

The guarding game is E-complete

Publikace na Matematicko-fyzikální fakulta |
2014

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

The guarding game is a game in which several cops try to guard a region in a (directed or undirected) graph against Robber. Robber and the cops are placed on the vertices of the graph; they take turns in moving to adjacent vertices (or staying), cops inside the guarded region, Robber on the remaining vertices (the robber-region).

The goal of Robber is to enter the guarded region at a vertex with no cop on it. The problem is to determine whether for a given graph and given number of cops the cops are able to prevent Robber from entering the guarded region.

Fomin et al. (2011) [7] proved that the problem is NP-complete when the robber-region is restricted to a tree. Further they prove that is it PSPACE-complete when the robber-region is restricted to a directed acyclic graph, and they ask about the problem complexity for arbitrary graphs.

In this paper we prove that the problem is E-complete for arbitrary directed graphs.