Charles Explorer logo
🇨🇿

YOUNG MODULE MULTIPLICITIES, DECOMPOSITION NUMBERS AND THE INDECOMPOSABLE YOUNG PERMUTATION MODULES

Publikace na Matematicko-fyzikální fakulta |
2014

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

We study the multiplicities of Young modules as direct summands of permutation modules on cosets of Young subgroups. Such multiplicities have become known as the p-Kostka numbers.

We classify the indecomposable Young permutation modules, and, applying the Brauer construction for p-permutation modules, we give some new reductions for p-Kostka numbers. In particular, we prove that p-Kostka numbers are preserved under multiplying partitions by p, and strengthen a known reduction corresponding to adding multiples of a p-power to the first row of a partition.