Charles Explorer logo
🇬🇧

A Survey of CUDA-based Multidimensional Scaling on GPU Architecture

Publication at Faculty of Mathematics and Physics |
2015

Abstract

The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction which is defined as a process of mapping data from high-dimensional space into low-dimensional. One of the most popular methods for handling this problem is multidimensional scaling.

Due to the technological advances, the dimensionality of the input data as well as the amount of processed data is increasing steadily but the requirement of processing these data within a reasonable time frame still remains an open problem. Recent development in graphics hardware allows to perform generic parallel computations on powerful hardware and provides an opportunity to solve many time-constrained problems in both graphical and non-graphical domain.

The purpose of this survey is to describe and analyze recent implementations of multidimensional scaling algorithms on graphics processing units and present the applicability of these algorithms on such architectures based on the experimental results which show a decrease of execution time for multi-level approaches.