Charles Explorer logo
🇨🇿

The Emergence of Regional Immigrant Concentrations in USA and Australia: A Spatial Relatedness Approach

Publikace na Přírodovědecká fakulta |
2015

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

This paper examines the patterns of the US and Australian immigration geography and the process of regional population diversification and the emergence of new immigrant concentrations at the regional level. It presents a new approach in the context of human migration studies, focusing on spatial relatedness between individual foreign-born groups as revealed from the analysis of their joint spatial concentrations.

The approach employs a simple assumption that the more frequently the members of two population groups concentrate in the same locations the higher is the probability that these two groups can be related. Based on detailed data on the spatial distribution of foreign-born groups in US counties (2000-2010) and Australian postal areas (2006-2011) we firstly quantify the spatial relatedness between all pairs of foreign-born groups and model the aggregate patterns of US and Australian immigration systems conceptualized as the undirected networks of foreign-born groups linked by their spatial relatedness.

Secondly, adopting a more dynamic perspective, we assume that immigrant groups with higher spatial relatedness to those groups already concentrated in a region are also more likely to settle in this region in future. As the ultimate goal of the paper, we examine the power of spatial relatedness measures in projecting the emergence of new immigrant concentrations in the US and Australian regions.

The results corroborate that the spatial relatedness measures can serve as useful instruments in the analysis of the patterns of population structure and prediction of regional population change. More generally, this paper demonstrates that information contained in spatial patterns (relatedness in space) of population composition has yet to be fully utilized in population forecasting.