Charles Explorer logo
🇬🇧

Pedicle screw convergence impact on the stability of transpedicular fixation spine model in cyclic loading: biomechanical study

Publication at First Faculty of Medicine |
2015

Abstract

The principle of this study is experimental measurement and description of behavior of transpedicular fixation during cyclic loading due to convergence of screw insertion. Investigations were made of three configurations of assemblies of posterior stabliization with converging screws at 0 degrees, 20 degrees and 40 degrees.

The experiment was inspired ASTM Standard F1717 and modified to minimize the effect of other parameters. The MTS 858.2 Mini Bionix testing system was used during the experiment, in conjunction with the Interface 1010ACK load cell.

Data processing and analysis were carried out by Matlab R 20102b, MathWorks. The probed assemblies were cyclically loaded until structural failure occurred, always at the screwbone (or PUR block) interface, i.e., the "windshield wiper" effect.

The measurement results show that while the rigidity of the assembly increases with increased convergence of transpedicular screws, they also indicate an increased initial rate of assembly damage accumulation, together with assembly failure during a reduced number of cyclic loading cycles. The mechanical behavioral study of transpedicular fixation is limited by the conditions of simplification of interpretation of complex movements and spinal pathophysiology in the attempt to minimize the effect of other parameters and exaggerated measurements.