Charles Explorer logo
🇨🇿

ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES

Publikace na Matematicko-fyzikální fakulta |
2016

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

In this note we study the structure of Lipschitz-free Banach spaces. We show that every Lipschitz-free Banach space over an infinite metric space contains a complemented copy of l(1).

This result has many consequences for the structure of Lipschitz-free Banach spaces. Moreover, we give an example of a countable compact metric space K such that F(K) is not isomorphic to a subspace of L-1 and we show that whenever M is a subset of R-n, then F(M) is weakly sequentially complete; in particular, c(0) does not embed into F(M).