Charles Explorer logo
🇬🇧

Hamiltonian and Godunov structures of the Grad hierarchy

Publication at Faculty of Mathematics and Physics |
2017

Abstract

The time evolution governed by the Boltzmann kinetic equation is compatible with mechanics and thermodynamics. The former compatibility is mathematically expressed in the Hamiltonian and Godunov structures, the latter in the structure of gradient dynamics guaranteeing the growth of entropy and consequently the approach to equilibrium.

We carry all three structures to the Grad reformulation of the Boltzmann equation (to the Grad hierarchy). First, we recognize the structures in the infinite Grad hierarchy and then in several examples of finite hierarchies representing extended hydrodynamic equations.

In the context of Grad's hierarchies, we also investigate relations between Hamiltonian and Godunov structures.