Charles Explorer logo
🇨🇿

Novel Mutation (T273R) in Thyroid Hormone Receptor beta Gene Provides Further Insight into Cryptic Negative Regulation by Thyroid Hormone

Publikace na 1. lékařská fakulta, Fakulta tělesné výchovy a sportu |
2017

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Production of thyroid hormone is precisely regulated in a negative feed-back mechanism that depends critically on thyroid hormone receptor beta (TR beta). This mechanism decreases production of thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) in the hypothalamus and pituitary gland in response to high levels of circulating thyroid hormones (TH).

Despite the wealth of accumulated knowledge, it is still not clear how exactly this negative regulation is executed. The syndrome of resistance to thyroid hormone (RTH), in which the levels of TH are not properly sensed, represents naturally occurring situations in which molecular components of this regulation are displayed and may be uncovered.

TR beta, which is central to this regulation, is in the majority of RTH cases mutated in a way that preserves some functions of the receptor. Approximately 150 different mutations in TR beta have been identified to date.

Here, we hypothesized that additional pathogenic mutations in TR beta are likely to exist in human population and analysed clinical cases with suspected RTH. In keeping with our prediction, analysis of 17 patients from nine families led to identification of four presumed pathogenic mutations of TR beta, including a previously unknown mutation, T273R.

This suggests that threonine 273 is likely to be critical for the normal function of TR beta, possibly due to its role in helix 12 mobility and interaction with coactivators, and thus supports the concept that TR beta-dependent trans-activating function is necessary for the inhibition of TRH and TSH expression in response to elevated levels of TH.