The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS).
As hydrophobic nanoparticles quantum dots (QD) with size of 3.8 nm (emission wavelength of 420 nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions.
Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique.
The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer.
Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion.