Charles Explorer logo
🇬🇧

COQ2 polymorphisms are not associated with increased risk of statin-induced myalgia/ myopathy in the Czech population

Publication at First Faculty of Medicine |
2017

Abstract

Background: The gene COQ2, encoding 4-hydroxybenzoate-polyprenyltransferase (coenzyme Q2), belongs to the candidates potentially influencing statin treatment tolerability. This enzyme is involved in the biosynthesis of coenzyme Q10 (CoQ10), in which depletion induced by statin treatment is implicated in the development of statin-associated muscle symptoms (SAMS).

Thus, polymorphisms in the COQ2 gene might explain susceptibility to SAMS. Methods: Adult patients with SAMS (on low doses of atorvastatin and simvastatin)-induced myalgia/myopathy (n=278), patients on statins but without SAMS (n=293) and population (part of the post-MONICA [Multinational MONItoring of trends and determinants in CArdiovascular disease] study) controls (n=561) were genotyped (polymerase chain reaction-restriction fragment length polymorphism [PCR-RFLP] assay) for rs6535454 and rs4693075 polymorphisms within the COQ2 gene loci.

Results: Distribution of rs6535454 in patients with SAMS (GG=51.1%, GA=40.0%, AA=8.9%) did not significantly differ (p=0.33; respectively 0.32 for codominant models of the analysis) from that in the population controls (GG=48.1%, GA=45.0%, AA=6.9%) or the SAMS-unaffected patients (GG=49.8%, GA=40.3%, AA=9.7%). Similarly, neither rs4693075 was associated with SAMS (CC=36.8%, CG=48.2%, GG=15.0% in patients suffering SAMS vs.

CC=36.6%, CG=47.5%, GG=15.9 in controls and CC=35.8%, CG=48.2%, GG=15.9% in symptom-free patients, p=0.94 and 0.95 for codominant models of the analysis). Also, the haplotype distributions were not significantly different between the groups analyzed.

Conclusions: The polymorphisms of the COQ2 gene do not associate with SAMS in the Czech patients treated with low doses of statins. This is another clue that the coenzyme Q10 pathway is not the most important for the development of SAMS.