Charles Explorer logo
🇬🇧

THERMISTOR SYSTEMS OF p(x)-LAPLACE-TYPE WITH DISCONTINUOUS EXPONENTS VIA ENTROPY SOLUTIONS

Publication at Faculty of Mathematics and Physics |
2017

Abstract

We show the existence of solutions to a system of elliptic PDEs, that was recently introduced to describe the electrothermal behavior of organic semiconductor devices. Here, two difficulties appear: (i) the elliptic term in the current-flow equation is of p (x)-Laplacian-type with discontinuous exponent p, which limits the use of standard methods, and (ii) in the heat equation, we have to deal with an a priori L-1 term on the right hand side describing the Joule heating in the device.

We prove the existence of a weak solution under very weak assumptions on the data. Our existence proof is based on Schauder's fixed point theorem and the concept of entropy solutions for the heat equation.

Here, the crucial point is the continuous dependence of the entropy solutions on the data of the problem.