Charles Explorer logo
🇨🇿

ISOMETRIC REPRESENTATION OF LIPSCHITZ-FREE SPACES OVER CONVEX DOMAINS IN FINITE-DIMENSIONAL SPACES

Publikace na Matematicko-fyzikální fakulta |
2017

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Let E be a finite-dimensional normed space and Omega a non-empty convex open set in E. We show that the Lipschitz-free space of Omega is canonically isometric to the quotient of L-1 (Omega, E) by the subspace consisting of vector fields with zero divergence in the sense of distributions on E.