We present the results of studies devoted to the development and optimization of the optical part of a high precision time-of-flight (TOF) detector for the Large Hadron Collider (LHC). This work was motivated by a proposal to use such a detector in conjunction with a silicon detector to tag and measure protons from interactions of the type p + p -> p + X + p, where the two outgoing protons are scattered in the very forward directions.
The fast timing detector uses fused silica (quartz) bars that emit Cherenkov radiation as a relativistic particle passes through and the emitted Cherenkov photons are detected by, for instance, a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT). Several possible designs are implemented in Geant4 and studied for timing optimization as a function of the arrival time, and the number of Cherenkov photons reaching the photosensor. (C) 2014 Optical Society of America