The aim of the study is co-localization of N-glycans with fucose attached to N-acetylglucosamine in alpha 1,3 linkage, that belong to immunogenic carbohydrate epitopes in humans, and N-glycans with alpha 1,6-core fucose typical for mammalian type of N-linked glycosylation. Both glycan epitopes were labelled in cryosections of salivary glands isolated from the tick Ixodes ricinus.
Salivary glands secrete during feeding many bioactive molecules and influence both successful feeding and transmission of tick-borne pathogens. For accurate and reliable localization of labelled glycans in both fluorescence and scanning electron microscopes, we used carbon imprints of finder or indexed EM grids on glass slides.
We discuss if the topographical images can provide information about labelled structures, the working setting of the field-emission scanning electron microscope and the influence of the detector selection (a below-the-lens Autrata improved YAG detector of back-scattered electrons; in-lens and conventional Everhart-Thornley detectors of secondary electrons) on the imaging of gold nanoparticles, quantum dots and osmium-stained membranes.