Iron(III) and uranyl complexes of N-methylacetohydroxamic acid (NMAH) have been investigated by mass spectrometry, infrared multiphoton dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. A comparison between IRMPD and theoretical IR spectra enabled one to probe the structures for some selected complexes detected in the gas phase.
The results show that coordination of Fe3+ and UO2(2+) by hydroxamic acid is of a very similar nature. Natural bond orbital analysis suggests that bonding in uranyl complexes possesses a slightly stronger ionic character than that in iron complexes.
Collision-induced dissociation (CID), IRMPD, and O-18-labeling experiments unambiguously revealed a rare example of the U=O bond activation concomitant with the elimination of a water molecule from the gaseous [UO2(NMA)(NMAH)(2)](+) complex. The U=O bond activation is observed only for complexes with one monodentate NMAH molecule forming a hydrogen bond toward one "yl" oxygen atom, as was found by DFT calculations.
This reactivity might explain oxygen exchange observed for uranyl complexes.