A new method of synthesis of an analogue of Bolm's 2,2'-bipyridine ligand based on the catalytic [2+2+2] cyclotrimerization of 1-halodiynes with nitriles was developed. Crucial step of the whole synthesis turned out to be homodimerization of a substituted 2-bromopyridine to the corresponding bipyridine, that was studied and optimized.
The newly prepared bipyridine (S,S)-2 was then tested as a chiral ligand in metal-catalyzed enantioselective reactions. Out of the studied reactions the most promising results were obtained in epoxide ring opening (82% yield, 98%ee) and Mukaiyama aldol reaction (>96% yield, 99/1dr, 92%ee).
In the case of Mukaiyama-aldol reaction as well as in the Michael addition, novel ligand 2 proved its robustness compared to Bolm's ligand as it was less sensitive to the purity of used reagents.