Mirror neurons are specific association neurons that are active both during a certain movement and during the observation of such movement. It can be assumed that mirror neurons play an important role in the ability to imitate and are an important condition for the rehabilitation of the locomotor system.
Methods: The aim of our work was to find out whether and how the electrical brain activity is evaluated using the sLORETA display between the actual active movement of a particular motion and the passive tracking of the same motion performed by the therapist or the same motion in the 2D video monitored in the virtual environment. Results: The study was attended by 12 healthy, college students, 8 women and 4 men, whose average age was 24 years.
Electroencephalographic activity was registered using the Natus Neurology Nicolet EEG Wireless 32/64 Amplifier, a 32-channel telemetric EEG device. (USA). Statistically significant differences in the significance level of pLESS-THAN OR EQUAL TO0.05 were found in the alpha-1, 2 and beta-2 band when comparing active movement (ACTIVE) versus resting EEG (PRE OE), passive motion monitoring by the therapist PASSIVE versus resting EEG activity with open eyes (PRE OE) and passive 2D motion video viewing (VIDEO) versus resting EEG open-eye activity (PRE OE).Conclusion: The results show that there is a great similarity in brain activity in monitoring the movement of the therapist and in the actual implementation of the same movement by the patient.
This finding completely corresponds to the existence of mirror neurons and the results of published studies. The second finding is the finding of a difference in brain activity between real-world motion tracking and tracking the same motion in 2D video in virtual reality glasses.