Viscoelastic rate-type fluid models involving the stress and frame-indifferent time derivatives of second order, like those in Burgers' model, are used to describe the complicated response of fluid like materials that are endowed with a complex microstructure that allows them to possess two different relaxation mechanisms as well as other non-Newtonian characteristics. Such models are used in geomechanics, biomechanics, chemical engineering and material sciences.
We show how to develop such rate-type fluid models that include the classical Burgers' model as well as variants of Burgers' model, using a thermodynamic approach based on constitutive assumptions for two scalar quantities (namely, how the material stores energy and how the energy is dissipated) and appealing to the concept of natural configuration associated with the placement of the body that evolves as the body deforms.